Добро пожаловать на самый полный курс по Машинному Обучению и Data Science!
Этот курс - лучший способ начать с нуля и стать специалистом по data science и машинному обучению с помощью Python.
Это русскоязычная версия курса,который Хосе и его команда готовили больше года. И это уже после того,как предыдущие курсы прошли более 2 миллионов слушателей.
Этот объёмный курс может заменить Вам целый набор других курсов, которые могут стоить в десятки раз больше.
Вэтом курсе Вы изучите следующие темы:
Программирование в Python (экспресс-курс)
NumPy в Python
Детальное изучение Pandas для анализа и предварительной обработки данных
Детальное изучение Seaborn для визуализации данных (включая Matplotlib для кастомизации графиков)
Машинное обучение с помощью SciKit Learn, включая следующие темы:
Linear Regression - Линейная Регрессия
Regularization - Регуляризация
Lasso Regression - Лассо-Регрессия
Ridge Regression - Ридж-Регрессия
Регуляризация Elastic Net
Logistic Regression - Логистическая регрессия
K Nearest Neighbors - Метод К-ближайших соседей
Decision Trees - Деревья решений
Random Forests - Случайные леса
AdaBoost, GradientBoosting - Адаптивный бустинг,Градиентный бустинг
Natural Language Processing - Обработка языковых данных
K Means Clustering - Кластеризация К-средних
Hierarchical Clustering - Иерархическая кластеризация
DBSCAN (Density-based spatial clustering of applications with noise) - Кластеризация на основе плотности данных
PCA - Principal Component Analysis - Метод главных компонент
И многое,многое другое!
Внутри курса находится набор блокнотов Jupyter Notebook с русском языке с примерами кода и детальным описанием.Для каждого лекции это отдельные блокноты,которые разложены по папкам с соответствии с разделами курса.Так что Вы сможете не только просмотреть видео-лекции,но и прочитать блокноты. Это особенно удобно,когда Вам нужно что-то вспомнить или быстро пробежаться по материалу в поисках нужной информации.
Как всегда,мы очень ценим возможность стать Вашими инструкторами по data science, машинному обучению и Python. Надеемся,что Вы запишитесь на этот курс и прокачаете Ваши навыки!