Rating 4.62 out of 5 (4 ratings in Udemy)
What you'll learn- Student akan belajar metode persamaan diferensial biasa - ODE orde 2 non homogen
- Student akan belajar metode persamaan diferensial biasa - sistem ODE
- Student mampu menerapkan konsep dasar ODE nonhomogeneous
- Student mampu menerapkan konsep dasar sistem ODE
DescriptionPemodelan matematika merupakan bidang matematika yang berusaha untuk mempresentasikan dan menjelaskan sistem-sistem fisik atau problem pada dunia real dalam …
Rating 4.62 out of 5 (4 ratings in Udemy)
What you'll learn- Student akan belajar metode persamaan diferensial biasa - ODE orde 2 non homogen
- Student akan belajar metode persamaan diferensial biasa - sistem ODE
- Student mampu menerapkan konsep dasar ODE nonhomogeneous
- Student mampu menerapkan konsep dasar sistem ODE
DescriptionPemodelan matematika merupakan bidang matematika yang berusaha untuk mempresentasikan dan menjelaskan sistem-sistem fisik atau problem pada dunia real dalam pernyataan matematika sehingga diperoleh pemahaman dari problem dunia real ini menjadi lebih tepat. (Prayudi, 2006). Course Orde Tinggi dan Sistem Persamaan Diferensial Biasa merupakan course lanjutan dari Persamaan Diferensial Biasa Orde Pertama dan Kedua. Course ini menjelaskan mengenai konsep dasar pemodelan matematika yang dapat diaplikasikan pada berbagai masalah engineering problem. Metode pemodelan yang akan dijelaskan pada course ini adalah metode persamaan diferensial biasa, yang mencakup ODE orde 2 non homogen dan sistem persamaan diferensial. Course ini bukan hanya menjelaskan kosep dasarnya saja, tetapi juga memberikan contoh pemodelan beserta penyelesaiannya
Persamaan differensial adalah persamaan yang mengandung beberapa turunan dari suatu fungsi. Persamaan differensial biasa adalah Persamaan yang mempunyai fungsi satu variable bebas. ODE digunakan untuk mendapatkan formulasi suatu fenomena yang mengalami perubahan terhadap waktu atau tempat. Order suatu persamaan differensial adalah tingkat turunan tertinggi persamaan differensial tersebut.
Materi yang akan dipelajadi dalam course ini adalah:
ODE Non-Homogen : diharapkan student mampu menerapkan konsep dasar ODE nonhomogeneous
Sistem ODE : diharapkan student mampu menerapkan konsep dasar sistem ODE
Dari dua section diatas akand dijabarkan kedalam beberapa modul, antara lain:
Nonhomogeneous ODE Concept
Nonhomogeneous ODE Example
Laplace Transform for ODE: Concept
Laplace Transform for ODE: Example
Spring Mass System (Application of ODE)
ODE System Concept
ODE System Example
Mixing Problem (Application of ODE system)