Text Mining & Natural Language Understanding at Scale
Video description
A text mining system must go way beyond indexing and search to appear truly intelligent. First, it should understand language beyond keyword matching. For example, it should be able to distinguish the critical difference between “Jane has the flu” and “Jane had the flu when she was 9.” Second, it should be capable of making likely inferences even if they’re not explicitly written. For example, inferring that Jane …
Text Mining & Natural Language Understanding at Scale
Video description
A text mining system must go way beyond indexing and search to appear truly intelligent. First, it should understand language beyond keyword matching. For example, it should be able to distinguish the critical difference between “Jane has the flu” and “Jane had the flu when she was 9.” Second, it should be capable of making likely inferences even if they’re not explicitly written. For example, inferring that Jane may have the flu if she has had a fever, headache, fatigue, and runny nose for three days. And third, it should do its work as part of a robust, scalable, efficient, and easy to extend system. This course teaches software engineers and data scientists how to build intelligent natural language understanding (NLU) based text mining systems at scale using Java, Scala, and Spark for distributed processing.
Learn the meaning of natural language understanding (NLU) and its use in text mining
Discover how to build a natural language processing (NLP) pipeline within a big data framework
Recognize the differences between NLP pipelines and other approaches to semantic text mining
Learn about standard UIMA annotators, custom annotators, and machine learned annotators
Discover how different types of annotators are composed into a text processing pipeline
Use machine learning to generate annotators and apply them within a data pipeline
See pipeline architectures that incorporate Kafka, Spark, SparkSQL, Cassandra, and ElasticSearch
David Talby (PhD , Computer Science, Hebrew University) and Claudio Branzan (Masters, Industrial Intelligent Systems, Polytechnic University of Timișoara) work for big data analytics firm Atigeo. David is CTO and Claudio runs the Modeling and Predictive Analytics team. David and Claudio co-presented on text mining and natural language understanding at O'Reilly's Strata+Hadoop World London 2016 conference.
Start your Free Trial Self paced Go to the Course We have partnered with providers to bring you collection of courses, When you buy through links on our site, we may earn an affiliate commission from provider.
This site uses cookies. By continuing to use this website, you agree to their use.I Accept