Get a practical introduction to Hadoop, the framework that made big data and large-scale analytics possible by combining distributed computing techniques with distributed storage. In this video tutorial, hosts Benjamin Bengfort and Jenny Kim discuss the core concepts behind distributed computing and big data, and then show you how to work with a Hadoop cluster and program analytical jobs. You’ll also learn how to use higher-level tools …
Hadoop Fundamentals for Data Scientists
Video description
Get a practical introduction to Hadoop, the framework that made big data and large-scale analytics possible by combining distributed computing techniques with distributed storage. In this video tutorial, hosts Benjamin Bengfort and Jenny Kim discuss the core concepts behind distributed computing and big data, and then show you how to work with a Hadoop cluster and program analytical jobs. You’ll also learn how to use higher-level tools such as Hive and Spark.
Hadoop is a cluster computing technology that has many moving parts, including distributed systems administration, data engineering and warehousing methodologies, software engineering for distributed computing, and large-scale analytics. With this video, you’ll learn how to operationalize analytics over large datasets and rapidly deploy analytical jobs with a variety of toolsets.
Once you’ve completed this video, you’ll understand how different parts of Hadoop combine to form an entire data pipeline managed by teams of data engineers, data programmers, data researchers, and data business people.
Understand the Hadoop architecture and set up a pseudo-distributed development environment
Learn how to develop distributed computations with MapReduce and the Hadoop Distributed File System (HDFS)
Work with Hadoop via the command-line interface
Use the Hadoop Streaming utility to execute MapReduce jobs in Python
Explore data warehousing, higher-order data flows, and other projects in the Hadoop ecosystem
Learn how to use Hive to query and analyze relational data using Hadoop
Use summarization, filtering, and aggregation to move Big Data towards last mile computation
Understand how analytical workflows including iterative machine learning, feature analysis, and data modeling work in a Big Data context
Benjamin Bengfort is a data scientist and programmer in Washington DC who prefers technology to politics but sees the value of data in every domain. Alongside his work teaching, writing, and developing large-scale analytics with a focus on statistical machine learning, he is finishing his PhD at the University of Maryland where he studies machine learning and artificial intelligence.
Jenny Kim, a software engineer in the San Francisco Bay Area, develops, teaches, and writes about big data analytics applications and specializes in large-scale, distributed computing infrastructures and machine-learning algorithms to support recommendations systems.
Working with Hadoop via the Command Line: Starting HDFS and Yarn
Working with Hadoop via the Command Line: Loading Data into HDFS
Working with Hadoop via the Command Line: Running a MapReduce Job
How To Use Our Github Goodies
Working in Python with Hadoop Streaming
Common MapReduce Tasks
Spark on Hadoop 2
Creating a Spark Application with Python
The Hadoop Ecosystem
The Hadoop Ecosystem
Data Warehousing with Hadoop
Higher Order Data Flows
Other Notable Projects
Working with Data on Hive
Introduction to Hive
Interacting with Data via the Hive Console
Creating Databases, Tables, and Schemas for Hive
Loading Data into Hive from HDFS
Querying Data and Performing Aggregations With Hive
Towards Last Mile Computing
Decomposing Large Data Sets to a Computational Space
Linear Regressions
Summarizing Documents with TF-IDF
Classification of Text
Parallel Canopy Clustering
Computing Recommendations via Linear Log-Likelihoods
Start your Free Trial Self paced Go to the Course We have partnered with providers to bring you collection of courses, When you buy through links on our site, we may earn an affiliate commission from provider.
This site uses cookies. By continuing to use this website, you agree to their use.I Accept