Statistics for Data Science with Python
This Statistics for Data Science course is designed to introduce you to the basic principles of statistical methods and procedures used for data analysis. After completing this course you will have practical knowledge of crucial topics in statistics including - data gathering, summarizing data using descriptive statistics, displaying and visualizing data, examining relationships between variables, probability distributions, expected values, hypothesis testing, introduction to ANOVA (analysis of variance), regression and correlation analysis. You will take a hands-on approach to statistical analysis using Python and Jupyter Notebooks – the tools of choice for Data Scientists and Data Analysts. At the end of the course, you will complete a project to apply various concepts in the course to a Data Science problem involving a real-life inspired scenario and demonstrate an understanding of the foundational statistical thinking and reasoning. The focus is on developing a clear understanding of the different
approaches for different data types, developing an intuitive understanding, making appropriate assessments of the proposed methods, using Python to analyze our data, and interpreting the output accurately.
This course is suitable for a variety of professionals and students intending to start their journey in data and statistics-driven roles such as Data Scientists, Data Analysts, Business Analysts, Statisticians, and Researchers. It does not require any computer science or statistics background. We strongly recommend taking the Python for Data Science course before starting this course to get familiar with the Python programming language, Jupyter notebooks, and libraries. An optional refresher on Python is also provided.
After completing this course, a learner will be able to:
✔Calculate and apply measures of central tendency and measures of dispersion to grouped and ungrouped data.
✔Summarize, present, and visualize data in a way that is clear, concise, and provides a practical insight for non-statisticians needing the results.
✔Identify appropriate hypothesis tests to use for common data sets.
✔Conduct hypothesis tests, correlation tests, and regression analysis.
✔Demonstrate proficiency in statistical analysis using Python and Jupyter Notebooks.
Write Python code to conduct various statistical tests including a T test, an ANOVA, and regression analysis.
Interpret the results of your statistical analysis after conducting hypothesis testing.
Calculate descriptive statistics and visualization by writing Python code.
Create a final project that demonstrates your understanding of various statistical test using Python and evaluate your peer's projects.
Syllabus
Syllabus - What you will learn from this course
Week 1
Course Introduction and Python Basics
Week 2
Introduction & Descriptive Statistics
Week 3
Data Visualization
Week 4
Introduction to Probability Distributions
Week 5
Hypothesis testing
Week 6
Regression Analysis
Week 7
Project Case: Boston Housing Data
Week 8
Final Exam
Week 9
Other Resources
FAQ
When will I have access to the lectures and assignments?
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
What will I get if I subscribe to this Specialization?
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
Is financial aid available?
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Reviews
Excellent course with a step by step explanation and complete final assignment.
Excellent Course...Would be great if add few more examples
A well structured course, simple and direct to the point, with a little of exercising you'll come out with a huge understanding of the statistical concepts.
A good introduction to those who want a brief taste of statistics