Introduction to Recommender Systems Non-Personalized and Content-Based
This course, which is designed to serve as the first course in the Recommender Systems specialization, introduces the concept of recommender systems, reviews several examples in detail, and leads you through non-personalized recommendation using summary statistics and product associations, basic stereotype-based or demographic recommendations, and content-based filtering recommendations. After completing this course, you will be able to compute a variety of recommendations from datasets using basic spreadsheet tools, and if you complete the honors track you will also have programmed these recommendations using the open source LensKit recommender toolkit.
In addition to detailed lectures and interactive exercises, this course features interviews with several leaders in research and practice on advanced topics and current directions in recommender systems.
None
Syllabus
Syllabus - What you will learn from this course
Week 1
Preface
Introducing Recommender Systems
Week 2
Non-Personalized and Stereotype-Based Recommenders
Week 3
Content-Based Filtering – Part I
Week 4
Content-Based Filtering – Part II
Course Wrap-up
FAQ
When will I have access to the lectures and assignments?
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
What will I get if I subscribe to this Specialization?
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
Is financial aid available?
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
How does this course relate to the prior versions of "Introduction to Recommender Systems"?
This specialization is a substantial extension and update of our original introductory course. It involves about 60% new and extended lectures and mostly new assignments and assessments. This course specifically has added material on stereotyped and demographic recommenders and on advanced techniques in content-based recommendation.
Reviews
Well-designed assignments and instructive programming exercises in the honors track.
Great course. I really appreciated the efforts spent by the course team.
Excellent content, great structured frameworks to understand when / why to use different recommenders
I think this is a good course to start exploring recommendation systems.