Population Health Predictive Analytics
Predictive analytics has a longstanding tradition in medicine. Developing better prediction models is a critical step in the pursuit of improved health care: we need these tools to guide our decision-making on preventive measures, and individualized treatments. In order to effectively use and develop these models, we must understand them better. In this course, you will learn how to make accurate prediction tools, and how to assess their validity. First, we will discuss the role of predictive analytics for prevention, diagnosis, and effectiveness. Then, we look at key concepts such as study design, sample size and overfitting.Furthermore, we comprehensively discuss important modelling issues such as missing values, non-linear relations and model selection. The importance of the bias-variance tradeoff and its role in prediction is also addressed. Finally, we look at various way to evaluate a model - through performance measures, and by assessing both internal and external validity. We also discuss how to update a model to a specific setting.
Throughout the course, we illustrate the concepts introduced in the lectures using R. You need not install R on your computer to follow the course: you will be able to access R and all the example datasets within the Coursera environment. We do however make references to further packages that you can use for certain type of analyses – feel free to install and use them on your computer.
Furthermore, each module can also contain practice quiz questions. In these, you will pass regardless of whether you provided a right or wrong answer. You will learn the most by first thinking about the answers themselves and then checking your answers with the correct answers and explanations provided.
This course is part of a Master’s program Population Health Management at Leiden University (currently in development).
Understand the role of predictive analytics for prevention, diagnosis, and effectiveness
Explain key concepts in prediction modelling: appropriate study design, adequate sample size and overfitting
Understand important issues in model development, such as missing data, non-linear relations and model selection
Know about ways to assess model quality through performance measures and validation
Syllabus
Syllabus - What you will learn from this course
Week 1
Welcome to Leiden University
Prediction for prevention, diagnosis, and effectiveness
Week 2
Modeling Concepts
Week 3
Model development
Week 4
Model validation and updating
FAQ
When will I have access to the lectures and assignments?
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
What will I get if I purchase the Certificate?
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
Is financial aid available?
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Reviews
Very Challenging and instructive enjoyed it thank you
Provide lots of useful tips for practical deployment of predictive analytics and also some brief theoretical background. A very well presented course.
Helpful course for the ones wanting to discover and understand how predictive analytics can help you in approaching health-related issues.