Machine Learning Clustering & Retrieval
Case Studies: Finding Similar DocumentsA reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover?
In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce.
Learning Outcomes: By the end of this course, you will be able to:
-Create a document retrieval system using k-nearest neighbors.
-Identify various similarity metrics for text data.
-Reduce computations in k-nearest neighbor search by using KD-trees.
-Produce approximate nearest neighbors using locality sensitive hashing.
-Compare and contrast supervised and unsupervised learning tasks.
-Cluster documents by topic using k-means.
-Describe how to parallelize k-means using MapReduce.
-Examine probabilistic clustering approaches using mixtures models.
-Fit a mixture of Gaussian model using expectation maximization (EM).
-Perform mixed membership modeling using latent Dirichlet allocation (LDA).
-Describe the steps of a Gibbs sampler and how to use its output to draw inferences.
-Compare and contrast initialization techniques for non-convex optimization objectives.
-Implement these techniques in Python.
None
Syllabus
Syllabus - What you will learn from this course
Week 1
Welcome
Week 2
Nearest Neighbor Search
Week 3
Clustering with k-means
Week 4
Mixture Models
Week 5
Mixed Membership Modeling via Latent Dirichlet Allocation
Week 6
Hierarchical Clustering & Closing Remarks
FAQ
When will I have access to the lectures and assignments?
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
What will I get if I subscribe to this Specialization?
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
Is financial aid available?
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Reviews
The UWash Machine Learning courses are among the most useful I've ever taken. I feel extremely confident in what I've learned and the education is detailed & comprehensive.
Great course, all the explanations are so good and well explained in the slides. Programming assignments are pretty challenging, but give really good insight into the algorithms!.
Thanks!
excellent material! It would be nice, however, to mention some reading material, books or articles, for those interested in the details and the theories behind the concepts presented in the course.
A great course, well organized and delivered with detailed info and examples. The quiz and the programming assignments are good and help in applying the course attended.