Introduction to Trading, Machine Learning & GCP
In this course, you’ll learn about the fundamentals of trading, including the concept of trend, returns, stop-loss, and volatility. You will learn how to identify the profit source and structure of basic quantitative trading strategies. This course will help you gauge how well the model generalizes its learning, explain the differences between regression and forecasting, and identify the steps needed to create development and implementation backtesters. By the end of the course, you will be able to use Google Cloud Platform to build basic machine learning models in Jupyter Notebooks. To be successful in this course, you should have advanced competency in Python programming and familiarity with pertinent libraries for machine learning, such as Scikit-Learn, StatsModels, and Pandas. Experience with SQL is recommended. You should have a background in statistics (expected values and standard deviation, Gaussian distributions, higher moments, probability, linear regressions) and foundational knowledge of financial markets (equities, bonds, derivatives, market structure, hedging).
Understand the fundamentals of trading, including the concepts of trend, returns, stop-loss, and volatility.
Define quantitative trading and the main types of quantitative trading strategies.
Understand the basic steps in exchange arbitrage, statistical arbitrage, and index arbitrage.
Understand the application of machine learning to financial use cases.
Syllabus
Syllabus - What you will learn from this course
Week 1
Introduction to Trading with Machine Learning on Google Cloud
Week 2
Supervised Learning with BigQuery ML
Week 3
Time Series and ARIMA Modeling
Week 4
Introduction to Neural Networks and Deep Learning
FAQ
When will I have access to the lectures and assignments?
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
What will I get if I subscribe to this Specialization?
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
Is financial aid available?
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Reviews
Some of the content in Week 4, might be better placed earlier in the course. Other than that it was a great learning experience.
Good material... Assignment are very helpful. Flow is bit choppy specially for ML parts. It switches from simple to advance topic rather randomly.
Very good course us introduction to Trading, ML models for trading, ML, Neural networks concept and approaches, Google cloud platform.
A good intro to machine learning in finance. I does not goes very deep, but hat some useful exercises and practice with google cloud.