Intro to Analytic Thinking, Data Science, and Data Mining
Welcome to Introduction to Analytic Thinking, Data Science, and Data Mining. In this course, we will begin with an exploration of the field and profession of data science with a focus on the skills and ethical considerations required when working with data. We will review the types of business problems data science can solve and discuss the application of the CRISP-DM process to data mining efforts. A brief overview of Descriptive, Predictive, and Prescriptive Analytics will be provided, and we will conclude the course with an exploratory activity to learn more about the tools and resources you might find in a data science toolkit.
The knowledge and skills needed to work in the data science profession
How data science is used to solve business problems
The benefits of using the cross-industry standard process for data mining (CRISP-DM)
Syllabus
Syllabus - What you will learn from this course
Week 1
Data Science: The Field and Profession
Week 2
Data Science in Business
Week 3
Data Mining and an Overview of Data Analytics
Week 4
Solving Problems with Data Science
FAQ
When will I have access to the lectures and assignments?
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
What will I get if I subscribe to this Specialization?
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
Is financial aid available?
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Reviews
I consider this course a must for one's journey into Data Science. The videos are short and to the point to serve the purpose of the course.
The knowledge asked in the first quiz, hasn't been mentioned before in the reading.
It is informative and gives me overview about data science and the future