Inferential Statistical Analysis with Python
In this course, we will explore basic principles behind using data for estimation and for assessing theories. We will analyze both categorical data and quantitative data, starting with one population techniques and expanding to handle comparisons of two populations. We will learn how to construct confidence intervals. We will also use sample data to assess whether or not a theory about the value of a parameter is consistent with the data. A major focus will be on interpreting inferential results appropriately. At the end of each week, learners will apply what they’ve learned using Python within the course environment. During these lab-based sessions, learners will work through tutorials focusing on specific case studies to help solidify the week’s statistical concepts, which will include further deep dives into Python libraries including Statsmodels, Pandas, and Seaborn. This course utilizes the Jupyter Notebook environment within Coursera.
Determine assumptions needed to calculate confidence intervals for their respective population parameters.
Create confidence intervals in Python and interpret the results.
Review how inferential procedures are applied and interpreted step by step when analyzing real data.
Run hypothesis tests in Python and interpret the results.
Syllabus
Syllabus - What you will learn from this course
Week 1
WEEK 1 - OVERVIEW & INFERENCE PROCEDURES
Week 2
WEEK 2 - CONFIDENCE INTERVALS
Week 3
WEEK 3 - HYPOTHESIS TESTING
Week 4
WEEK 4 - LEARNER APPLICATION
FAQ
When will I have access to the lectures and assignments?
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
What will I get if I subscribe to this Specialization?
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
What is the refund policy?
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Is financial aid available?
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Reviews
Good theoretical foundation, but lacks explanation on python libraries extensively used in the course.
this is absolutely a great course. i happy learning this one. the subjects they explained was crystal clear and i would suggest this to my mates.
The best part of this that it is designed in a way that it encourages people to dig deeper and explore more. The instructors have done a great job in making the curriculam this good.
Do you want to have an in-depth understanding of statistics in data science? Take the full specialization and you won't regret it. Fantastic course